Looking at the 2N5457 datasheet from Fairchild, you can see that drain saturation current (IDSS) and gate cutoff voltage (VGS(OFF)) are correlated:
The device test circuit is not much more than that. It needs a supply voltage somewhat greater than the reference voltage in the datasheet (I have an 18V regulated supply), has gate and source tied together, and has a drain resistor set to drop the supply voltage to about the reference voltage with saturation current flowing:
You don't really have to have a close-tolerance on the resistor; just measure its actual resistance and use that to select the range of voltages it will drop for the range of currents within your design tolerance.
I needed five 2N5457s that were within 5% of the Circuitmaker model. I bought 100 (for 8 cents apiece at Mouser), and I tested 40 before I found six that were within my range. Most of the others were under and a few were over (not surprising since the selected value was in the upper portion of the range).
My circuit was nothing earth-shaking, just a few ideas taken from typical tube guitar preamp design with the JFETs substituted in, and component values adjusted to get a meaningful operating point at battery voltages. I didn't do a thorough scientific verification of the gain in the real circuit, but the measured operating points were all within 10%. (Even though I selected the JFETs at 5%, the resistors were 10%). It doesn't really sound like a tube amp, but it is better than the last distortion unit I built (some 25 years ago), the Tube Sound Fuzz from Craig Anderton's Electronic Projects for Musicians. I continued my tradition of natural aluminum enclosures, and aside from the name of the unit, I only used pictograms for the legend (Skull & crossbones = gain; heart = tone; quaver = volume). I'll have to design the next JFET circuit around a device with a lower IDSS (and VGS(OFF)) to use up the ones I have left.Coming soon: Interstellar Overdrive!


